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By introducingthegeneralnotion of Lie pseudogroupsandrelatedgeometricalconcepts,
it is shownthatall affineandprojectivestructureson a Riemannsurfaceemergefrom the
computationof certaindifferential invariantsfor a suitabledifferential sequence,namely
the non-linearJanetsequencefor the 2-dconformalpseudogroup.

Similarly the correspondinggauge theory(for the same2-d conformalpseudogroup)is
relatedto thefirst non-linearSpencersequence.It is provedthatthelatterincorporatesex-
actly thevanishingcurvatureconditionsobtainedin aBRS differentialalgebraicframework
by L. Baulieu,M. Bellon andR. Grimm (Phys.Lett. B 260 (1991) 63) for the “gauging
of the Virasoroalgebra”.A propergeometricalmeaningof this referenceis thus provided
accordingto our jet theoreticalformulation.

At the sametime the cohomologicallink betweenthe non-linearJanetsequenceandthe
first non-linearSpencersequenceis explained.
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1. Introduction

For afew yearsnow,an importantpart ofthe activity in field theoryhasbeen
devotedto the studyof thequantizationof low dimensionalfieldssubjectto a
gaugesymmetry.It is fairto saythatmostquantizationschemesthatareusedare
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of a geometrictype,namelyquantizationovermoduli spaces.Besidesthe fact
that thesequantizationprocedureshavebeencommonlypreferred,aLagrangian
formulation of bidimensionalconformal field theoriesseemsto emergefrom
only two different geometricapproachesboth related to a differential algebra
implementedthroughtheBRS operation[1,21.

Letus briefly saythatthefirst one, developedin refs. [3—6],usingconceptsof
puredifferentialgeometry(atlas,manifolds,structures,bundles,etc.) providesa
satisfactorywell-definednessonaRiemannsurface,whilethesecond,elaborated
in refs. [7—9], appealsto the useful movingframetechniquewith covanance
insuredthroughtheuseof differential forms.

Moreover,on theonehandthereis a tentativeconstruction[10] using dif-

ferentialgeometryfor treatingtheso-calledW-algebrasby seekingafter purely
classical(differentialgeometric)objects.Ontheotherhand,by apureanalogy
with theBRS differentialalgebraicconstructionfor Yang—Mills theories,some
algebraicequationsgeneratingboth themaximal Lie subalgebra(denotçdw

2)
of theVirasoro algebraandthe so calledWi+~ algebrasareexhibitedin ref.
[11]. About thegaugingof theVirasoro algebraseealso ref. [12].

In thelight of theintroductionof ref. [10], thenotion of jet bundlesandflag
configurationsseemsto occuratsomepointin theformalismandit would benice
to be ableto go forward alongthis line. Moreoveras statedin the introduction
of ref. [111, the ideaof startingfirst with agivensymmetrygroup (oragivenLie
algebra)ratherthanlooking for all possiblesymmetriesof anapriori Lagrangian
andthengaugingits Lie algebra(or thegivenLie algebra)thanksto the BRS
techniquemight bepertinentat theconceptuallevel.

Having this in mind, we shall introducein thepresentpaperaclassicaltool,
whichwill betheformaltheoryofPDEsdevelopedby Spencerandcollaborators
during theperiod1963—1975 [13—151for thestudyof finite length differential
sequencesthat canbeconstructedfor Lie pseudogroups.(A Lie pseudogroupis
agroupof transformationswhicharesolutionsof asystemof PDEs.)

The applicationof this formal theory will be restrictedto the caseof 2-d
conformalfield theories.Thepurposeof this work is not to presentthecomplete
andrigoroustheorybut to showthat there existsa generalframeworkwithin
whichavarietyof resultsconcerning2-dconformalfieldtheoriesmaybeplaced.
In dealingwith it, we shall observethat, insteadof beingdirectly confronted
with an infinite dimensionalgroup of transformations,it is possibleto recover
afinite dimensionalsituationthanksto suchconceptsas Lie groupoidsandLie
algebroids,which will generalizethoseof (finite) Lie groupsand (finite) Lie
algebras.

The paperis organizedasfollows. In section2 we shall summarizetheneces-
saryingredients(jettheory,groupoidtheory,differential invariants)for thecon-
structionof thenon-linearJanetsequence[161 andthefirst non-linearSpencer
sequence[13] for thecaseof Lie pseudogroups,togetherwith theintricate link
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existingbetweenthem. Due to the lack of spaceand the technical natureof
manyargumentsthereaderwill be supposedto befamiliarwith a few basicdef-
initions that canbe found in textbooks,e.g.,refs. [17,18]; for a concisereview
see,e.g.,ref. [19]. However, this will fix thenotationandwe shall insiston the
morespecific conceptsandmethodsaccordingto the presentationadoptedby
the secondnamedauthorin dealingwith applicationsto mathematicalphysics
[20—22];for a shortreviewof ref. [22] seeref. [23].

Section3 is devotedto theconstructionof the non-linearJanetsequencefor
the2-d complexanalytic (conformalfor short)pseudogroup.In this framework
differential invariantsandtheir relatedgeometricobjectsfor thecomplexaffine
andprojectivestructuresarecomputed.In doingsowith respectto ourformula-
tion, werecoveramongotherthingsthepropergeometricalcontextwhichserved
as a startingpoint for a recentwork “On theorigin of W-algebras”[10].

Section4 dealswith theconstructionof thefirst non-linearSpencersequence
and its projectivelimits for the conformalpseudogroup.The analysisof gauge
variationsisprovided.Thankstothejet formulationtherebyintroducedthefirst
part of ref. [11] is reinvestigatedin this “non-standard”approach.

Threeappendicesareaddedwheresomecomputationaldetailsaregathered.

2. Lie pseudogroupsanddifferentialsequences

Throughoutthis work, manifoldsandmapswill be supposedto be smooth.
We shall usethe samenotationfor bundlesandsheavesof germsof sections
wheneverthe contextis clear:anoperatorwill beanarrowbetweentwo sheaves
of germsof sections.

2.1. JANET SEQUENCES

Let X be a real (oriented)manifoldof dimensionn with local coordinates
x = ~ i = 1,...,n. We shall denoteby T = T(X) and T* = T*(X) the
tangentand cotangentbundlesof X, respectively,andwe shalluse the symbols
®, S, A, for tensor,symmetricandexteriorproducts.Let Jq (X, X) bethebundle
of q-jets of mapsfrom X to X, f: X —~ X, identifiedwith their graph f: X —~

X x X, x i-* (x,f(x)) assectionsof thetrivial bundleX x X overX equipped
with thesourceprojectionaontothefirst factorandthe targetprojection/i onto
thesecondfactor.We haveao f = jdx. Fromnow on, we shallwrite f f.

Thelocalcoordinateson Jq (X, X) will bedenotedby (x’, y~),1, k = 1,. . . , n,

or simply (X,Yq), with y~= y~Candwhere the multi-index i’ = (u,,... ,u,~)
haslength

(2.1)

We also set
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~ + l~= (u,,..-,~1i-,,/4j+ 1,~, ji,~) . (2.2)

The transitionfunctionsof thejet bundleare providedby thoseof derivatives

afk(x)

by replacingderivativesby jet coordinatesy~.Thefiber dimensionof Jq (X,X)
~ ~~(n-~-q)Therearecanonicalprojections

~+r: Jq+r(X,X) Jq(X,X), (X,Yq+r) (X,Yq), Vq,r � 0, (2.3)

which correspondto truncationsat order q of the Taylorexpansionup to order
q + r.

We shalldenoteby 17q (X, X) or simply ll~theopensubbundleof Jq(X, X)
definedby the local condition det(yr) ~ 0. So ‘7q is the bundle of q-jets of
invertiblemapsfrom X to X. The correspondingsourceand targetprojections
of Hq on X aredenotedby aq = no irg and/Jq = ho ~rg,respectively.

We shall usuallydenotea section of ‘7q overf by fq : X [Ii,, X

(x,f,~(x))suchthataqofq= idxandirffofq = f.ToanysectionfofXxX
therecorrespondsthe sectionJq(f) : X —~ I7~,x ‘—* (x,~fk (x)) of TIq (the
q-jet off). We cansummarizethe situationin the following diagram:

Hq >XXX

~ !~
Remark 2.1. In generalf~k~ ~fk. This distinction is crucial aswill be seen
later on.

Werecallthata Liegroupoidoforderq onXis a fiberedsubmanifoldR~qC 11q
with compositionlaw R.q xx1~—p 7~andinverseR~ R~inducedby those
for ‘7q thatcanbedefinedthroughthewell knownchainrulefor derivativeswith
jetsinsteadof derivatives.Herethefibered productmustbetakenwith respect
to the targetprojection/Jqontheleft andto thesourceprojectionciqon theright,
and theinverseby reversingsourceand target.The identEtyelementis givenby
idq = j~(idx),theq-jet of the identitymapidx: X —~ XxX, x ~ (x,x). Let
usintroducetheLie algebroid

R~= id~1(V(1~q))CJq(T),

by consideringthe reciprocalimage(or pull-back)overX by idq of thevertical
bundle V(R~)of R~qaroundits identity solution usedby physicists.For this
reason,whenPDEsareconcerned,onemay speakaboutsystemsoffinite Lie
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equationsfor theLie groupoidlZq andsystemsofinfinitesimalLie equationsfor
the Lie algebroidRQ. Accordingly, the sheafof germsof solutionsof 1Z,.~is a Lie
pseudogroupof orderq, F C aut(X), whereaut(X) is the pseudogroupof all
local diffeomorphismsof X preservingtheorientation,that is,

Vf,g EF ~ gof ~ F, wheneverfandg canbecomposed,

Vf E F ~ f~E F,

idx E F,

and, with (in generalinfinite dimensional!) Lie algebra9 C T the sheafof
germsof solutionsof Rq (9 is a sheafof Lie algebras).In thesequelF will be
supposedtransitive,that is, for everyx,y ~ X thereexistsa transformationf E
F suchthaty = f (x), andRqwill beformally transitive,i.e., 7rg : X x X
is surjective.Let us give someexampleswhich will be of constantuse.

Examples2.2. (i) OnX = R theLie pseudogroupF ofaffine transformations
is givenby the solutionsof the secondorderlinear ODE

R.
2: Yxx = 0, (2.4)

andthe correspondinglinearsystemis

R2 : ~ = 0. (2.5)

(ii) On X = ~, if F is the Lie pseudogroupof projectivetransformations,it
is characterizedby thethird ordernon-linearODE

Yxxx/Yx — ~ (Yxx/yx)~ = 0, (2.6)

i.e.,thevanishingof thewell knownSchwarzianderivative,andsectionsof the
correspondingLie algebroidR3 aredefinedby

R3 : i~~~~(x)= 0. (2.7)

(iii) Similarly, at orderone, the unimodularpseudogroupin X = l~is de-
finedby thesystem

O(y
1,...,y~)/O(x’,...,x~) = 1,

while sectionsof theassociatedlinearizedsystemR
1 aredefined~ by

R1 : ~(x) = 0.

Of coursesolutionsof R, are “divergence-free”vectorfields.

~ It must not be confusedwith thedivergence8,.~’(x) of a vectorfield ~(x).



52 S. Lazzariniandf-F. Pommaret/ Lie pseudogroapsand differentialsequences

Now, if x0 E X is a given point, we mayintroducethe isotropyLie groups

Gq =

1~q(x
3, xo) andGLq = “q (xo,xo) madebyjetswith the samesourceand

target{xo}, andwe haveGq C GL~.
Thesubbundleof “q madebyjetsof transformationswitharbitrarysourceand

fixed target{xo} is aprincipal bundleTIq(X,xo) whosestructuralgroupis GLq;
theactionisdefinedby compositionatthe targetby jetswith thesamesourceand
targetx0. Thenwe maydefinethe bundleF = TIq (X,xo)IGq of homogeneous
spaceswith typical fiber GLq/ G~.The image ‘iZq (X,x0 ) /Gq of ~q (X,xo) C
TIq(X,Xo)by the canonicalprojection~: llq(X,xo) —p F makessensethanks
to theLie groupoidstructureof R.q. Moreover,by theformal transitivity of

1~q
this imagedefinesa sectionw of the bundleF —~ X. The dimensionof the
fibersofF is equalto m = codim1~~.

FollowingVessiot [24] thegroupoidcompositionatthesourcecommuteswith
thegroupoidcompositionatthetarget.Thena groupoidactionof ll~(X, X) can
alsobe definedon ‘7q (X, x

0) by compositionat thesource.This actionfactors
onto a groupoidactionof TIq(X,X) on Fby sourcetransformations.Therefore
thereis onF aninducedstructureof a naturalbundleof orderq overX provided
by the associationwith TIq (X,X) with aninvertible naturalaction

A: FxxTI~(X,X) —~F, A~: llq(X,X) x~F—~F,

definedthroughthe following commutativediagram:

Fxxflq >F

fig)

Thislastdescriptionallows usto lift ~2 anyf eaut(X) to alocalautomorphism
ofF fiberedoverf by definingonthesectionsofFanactionofeitherjet sections
fq or jetsof mapsfq (f). The actionof fq [or jq(f)] on a sectionw of F is a
new sectiond fq (w) of F definedby thefollowing commutativediagram:

FxxHq >F

(w,fq)1~ ~~thufq(w) (2.8)

#2 This simple definition ought to be comparedto the sophisticatedone usedfor a bundle
associatedwith a principal bundle.
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that is to say w(f(x)) = A(a(x),fq(x)). In particularfor gs E aut(X) thefi-
nite transformation laws th(~s(x)) = A (w (x),j~(q)(x)) callednatural trans-
formationsmaybeusedforconstructingcompletelythebundleF (comparewith
the tensorialcase)by patchingtogetheradaptedlocal coordinatesfor F, (x,u),
whereu = (u1,...,Urn) are local coordinateson the fiber of F. We havethe
formulas

F: . (2.9)

= ço(x)

Sinceg~(l?q (X,x0)) = co is a sectionof F, by pulling back to by a section of
‘
Tq, it is possibleto extendi~ to a surjectivemorphism~ : llq(X, X) F,

~ (fq) = fq~’(to). Henceonehasthe equivalentdefinitionsfoundby Vessiot
[24].

Definition 2.3 (Vessiot).TheLie groupoid1~C 17q of orderq overXis defined
by

= {fqElTq(X,X)/fg(w) to}; (2.10)

the Lie pseudogroupF c aut(X) is definedby

F = {feaut(X)/jq(f)(co) co}. (2.11)

Let usnow introduce

Definition 2.4.By a formal differential invariantof order q for F we meana
smoothfunction ‘~on17~which isinvariantunderthe left actionof thedefining
groupoidRq, that is,

Z(gqofq)=~(fq), fqEllq,gqERq.

Remark 2.5.Recallthata left actionis inducedby afinite transformationat the
target. A differential invariantis thena function which staysconstantalongthe
orbitsof theactionmap TIq xxR.q

Example 2.6.The pull-backcb~(fq) = fq~(to) is sucha differential invariant
because

~ (gqofq)’(w) (fq’og~)(w)fq1(w)~w(fq),
(2.12)

whenevergq C R.~,by eq.(2.10).

Looking at eq. (2.12),andsincecJ~is invariantunderthe groupoidaction

[cf. (2.8)] at the target, we may write

(fq~(g~(w)))(x)=A’((g~’(co))(x),fq(x)) A1(w(y),fq(x)),
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thanks,to thedefiningequation(2.10) for gq C ~ In otherwords,

cI~(y~)1’(w(y),y~) , 1 < ~ <q, (2.13)

wherethe dependenceon y of ~ (Yq) is only throughthe sectionto. This last
formula (2.13) will define the differential invariants in local coordinatesby
meansof a finite transformationlaw (2.8) determinedby thepull-back.

By analogywith tensorialbundles,let us give

Definition 2.7.ThebundleF is saidto bea bundleof geometricobjectsof order
q, anda givensectionto ofF will determinea “structure” on X.

Going to theinfinitesimalpointof view we maydefineaformalLiederivative
L(~to of to with respectto a sectionçeqof Jq( T) andwith valuesin thevector
bundleoverX,

F0 = w~(V(F)) =

which is thepull-backoverX of theverticalbundleof Fby thesectionto. it is
definedby consideringthe derivative

L(~~)co= d/dt~t=ofq~
1(W)

of a oneparameterfamily of pull-backsof a sectionto ~ F. Similarly we also
recoverthe usualLiederivativeby taking fq,t = Ii~(ft) [çeq= Jq(~)]

= L(jq(i~))

for anyvectorfield ~ E T. Thenwe have

Definition 2.8. The Lie algebroidRQ is definedby

Rq = {~qEJq(T)/L(~q)w0}; (2.14)

theLie algebra9 of thepseudogroupF is definedby

8 = {~�T/C(~)co=0}. (2.15)

Further,we mayevenintroducethe q-th orderlineardifferential operator

V: T—~F
0, —+i~)w,

but the readermustnot forgetthat the sectionto may not bea tensorat all!

Examples2.9.Forthepreviousexamples2.2wecanindeedperformthefollow-
ing constructionsfor thenaturalbundleF.

(i) In theaffine case,it turns outthat the expression
~aff(~2) ~Yxx/yx (2.16)

is a differential invariantof ordertwo for R~2in thesenseof definition2.4 as is
readilycheckedby actingon the targetwithanysectionf2 E 1Z2. By performing
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a transformationat the source,~ = ~(x), ~, ~ aut(X),which commuteswith
a transformationat thetarget,the changeof differential invariantprovidesthe
definitionofthebundleof “affmnegeometricobjects” (oraffine structures)given
by thefollowing patchingrulesfor thenaturalbundleF~ [with A~1in eq.(2.9)
insteadof A]:

~=~,(x) =~. u = ua~(o+a~2co!a~ca, (2.17)

whereô~standsfor a/8x and (x, u) are local adaptedcoordinatesof ~
(ii) Similarly, in theprojectivecase

~Proi(y

3) uyxxx/yx —4 (Yxx/Yx)
2, (2.18)

is a differential invariantof order threefor 1Z~.Following thesameline of con-
struction this yieldsthe definitionof a “projective geometricobject” (or projec-
tive structure)by thepatchingrules

~=q~(x) =~. v = ~(O~c’)2+{~,x}, (2.19)

where {ça,x} is the Schwarzianderivativeof the local diffeomorphismq’ with
respectto thecoordinatex andwhere (x,v) areadaptedlocal coordinateson

(iii) Likewise, a volume form is characterizedby theglueingof a density

~ g =

Now wegive

Definition 2.10.MoregenerallyonemaydefineanRe-connectionXq asa splitting
of theshort exactsequence

sq
0—-~R~-----~RQ‘~~T—~0, (2.20)

providedthat the Lie equationsare transitive,namely (aq,/3q) : R.~—~ X x X
and irg : Rq —~ T are bothsurjective.HereR~= Ker mg. Equivalentlysucha
connectionmayalsobeviewedas a sectionXq E P ® Rq projectingthrough ir,~

ontothesectionidr C P ® T, i.e., ~‘rgoXq = Xo = idT.

Remark2.11.For X = l~,n = 1, the readerwill easily checkthat in the case
(2.5) of an affine structurean R

2-connectionis just definedby the samerule
(2.17) of theassociatedgeometricalobject;butthis is apurecoincidence!More
preciselyunderthe local transformation~ = q (x), sinceR2 J1 (T) thanksto
eq. (2.4),we obtain thefollowing local changeof jet coordinates:

R2 : ~ —* ~

with ~ = ~ ~ = ~-~-4’ + ~, (2.21a)
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Tt ®R
2 : ~ .

82j+~ ~ ____
— ~,X, ~X,X — ~n ‘2”-~ T

~Ux(O/ &xco

wherethe secondsubscriptafter thecommalabelsT*. Sincethe connectionX2

doesdeterminea splitting (projectingonto idT) it canbeexpressedlocally as a
section

x ~—÷ (l,a1,~(x), 0) (ç~,~(x),~ 0).

Sothelasttransformationlawin (2.21)readsasthedefinition (2.17)ofanaffine
geometricobjectfor “u = ai,~”andthereforeX2 is indeedan affineconnection.

Similarly, after a slightly tediousbut direct computationin the projective
casegivenby eq. (2.7), an R3-connectionX3 maybe consideredas a sectionof
P ®R3 T* ®J2(T)

x~—* (l,aix(x),a2x(x),O)~(~,x(x),_çrx,x(x),_~xxx(x),O).

By projectionwe canthen readoff thefollowing connections:

x~—~(1,ai~(x),0)

as affine connection,and

x i—÷ (l,aIX(x),a2X(x))

as an ~2(T )-connection,for which the componentsare mixed betweenthem-
selvesby patching.But thereexistsa combinationdefininga newR3-connection
whosecomponentsdo not mix undera transformation

x~—.(l,a1~(x),a2~(x)+

Again by accident,its third componenttransformsas in (2.19) for aprojective
geometricobjectwith “v = a2,~+ 4a~5”,i.e. asprojectiveconnection.Butit must
be of interestto the readerto notice that two independentobjectsare required
with their patchinglaw for constructingsucha v which is rathera coordinate
on a naturalbundle.

Weshallseebelowthatactuallygeometricalobjectsandconnectionsarecom-
pletelydifferentconcepts.Theformerarerelatedto theJanetsequencealthough
theyare usuallyconfusedwith the latter, which arisein the Spencersequence.

In orderto obtaina simpleunderstandingoftheequivalenceproblemfor struc-
tureson X, Vessiot’skey ideawas to fix thebundleF butto varythe section.
Indeed,if to and to are two given sectionsof F we maylook for f ~ aut(X)
suchthat

jq(fY’(w) = to. (2.22)

The solution of this problemis related to a certain numberof compatibility
conditionsusuallydependingon to thatmustbesatisfiedby ~. Oncetheseformal
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conditionsare fulfilled the local solvability of the problem also dependson a
difficult analysisdue to the existenceof counterexamples[201. We shall only
be concernedwith theformalproblem.

In a similarspirit, if we takeanarbitrarysectionto, thecorrespondingsystems
of finite or infinitesimalLie equations,seedefinition 2.3, maynotbe involutive.
We shall sketchout this situation,referringfor the precisedefinitionsto refs.
[14,20]. Briefly speaking,thesymbolMq = R~fl SqT~® T of Rq is saidto be
involutiveif certainpurelyalgebraiccohomologygroupsintroducedby Spencer
[13,14] throughthe exactnessof certainsequences(ô-sequences)vanish.We
cannotinsiston this delicateand technicalnotionandthereadermustjust keep
in mind that it canbe checkedby purelinear (computer)algebraand that it
extendstheclassicaldefinitionsgivenby Janet[16] andCartanatthebeginning
of the century.The readerwho wishesto havea short surveyaboutsymboland
Spencerö-cohomologyis referredto ref. [19].

However,asystemof PDEsis saidtobe involutiveif it bothhasan involutive
symbolandisformally integrable.As this lastconceptis essentialfor applica-
tions we shall spendsome lines on it. Roughly speaking,a systemof PDEsis
calledformally integrable if a family of solutionscanbe constructedasformal
powerseriesby r differentiations(r —~ oc), in such a waythat at eachstepthe
new systemR~q+ r thusobtainedandcalledr-prolongation of Rqbrings no new
information on thelowerorderderivativesalreadycomputedat a point.

Example2.12 (Janet).Consideringthreeindependentvariables(x1, X
2, x3) and

oneunknowny, in the standardnotationfor derivatives,the system

033y — x20
11y= 0,

822Y = 0,

is not formally integrablebecauseby differentiatingtwice the first PDEwith
respectto x2 andtwicethesecondPDEwithrespecttox3 andx1 leadsto O~

2y =

0. Sucha conditioncannotbeobtainedby differentiatingonly onceeachPDE.

Of course, in practiceit is essentialto know whether a systemis formally
integrablesince it is the only way to collect information about the spaceof
solutionswithout anyexplicit integration.

Example 2.13.At first sight it is not evidentthat thespaceof solutionsin the
previousexample2.12 is a 12-dimensionalvectorspaceovertheconstants.

Coming backto our pseudogroups,we discoverthat for an arbitrary cv it is
extremelyimportantto know whetherRq(to) is involutive or at leastformally
integrable.Theanswerto thisquestionhasbeensketchedby Vessiotin 1903 [241
and the secondauthorhasextendedit to the generalcasein refs. [20,21]. The
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resultingintegrability conditionsfor anarbitrarysectioncv ofF may bewritten
in theform of a non-linearsystem13(c) C J1 (F) definedby asetof local PDEs,

I(j1(w)) = c(to), (2.23)

whereI: J1 (F) —~ F~isa certainnaturalequivariantmorphismbetweennatural
bundlesoverF while c : F —p .F~is a naturalequivariantsection.The main
surpriseis that thepreviousconditions(2.23) do not dependon thecoordinate
system.Moreover,c only dependslocally on a finite numberof constantscalled
structureconstantsandfulfills algebraicconditionsJ(c) = 0 atmostquadratic,
which generalizethe well known Jacobi identitiesfor those appearingin the
Maurer—Cartanequations[20,21].

Asaconsequence,theequivalenceproblemcanbereformulatedby sayingthat
thetwo sectionscv and~i mustsatisfythe sameintegrabilityconditions(2.23)
with thesameconstants,that is,

I(j1(w)) =c(w), I(j1(th)) =E(c~) withc=ë. (2.24)

Collectingall theprecedingresults,we obtain thefollowing non-linearJanet
sequence:

~Z~OJq JCji

0—*F—----~aut(X) o)oa> F c >F1, (2.25)

f ‘—4 jq(f)~(W),
wherecp isthe sameasin example2.6. Thelowerarrowin thefirst setof double
arrrowsmeansthat thekernelof tJ~with respectto a sectioncv of F, Ker~,(~I~),
is simply F and the secondset of doublearrowsexpresseseq. (2.23).For the
sakeof completenesswe indicatein the following diagramhow to considerthe
equivalenceproblem:

2
FxxH~ F

1~/q(f)
11 (2.26)

withA(j~(f)(w)(x),a~fk(x))= to(f(x)).
Finally by linearizationwe obtain the linearJanetsequence,whereeachdif-

ferential operatorrepresentsthe compatibilityconditionsfor the precedingone,

V V

1 V2 V~

0 —~ 8 —~ T —p F0 —i F1 .. —~ F~—~ 0. (2.27)
We now presenta few relevantexamples

Examples2.14. (i) to C F = S2T*, detco ~ 0. In this casethe well known
integrabilityconditionisconstantRiemanniancurvatureas foundby Eisenhart.
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(ii) cv C F = T* ® g, whereg is the Lie algebraof someLie group G act-
ing simply and transitively on X (or evenitself). In that casethe integrability
conditionsarethewell known Maurer—Cartanequations.

(iii) cv C F = T* ® T, to
2 = —idT with n = 2p. In thatcaseof almostcom-

plex analytic structures,theintegrability conditionsarethe so calledNijenhuis
conditions.

(iv) cv = (o~fl) C F = T~x,~-A2T* with n = 2. Thus the integrability
conditionisdcs= c/I. Consequentlybyusing(2.24),cv = (x2dx’,dx1Adx2)
andto = (dx’,dxt A dx2) are not equivalentbecausec = —l andi~= 0, i.e.,
[cf. (2.22)] asking for f C aut(X) suchthat& = J~(f)1 (to) hasno solution.

2.2. SPENCERSEQUENCES

Using definitionsand objectspreviouslyintroducedwe shall now construct
thefirst non-linearSpencersequence

0~aut(X)~Hq+i(X,X)~T*®Jq(T)~A2T*®Jqi(T). (2.28)

As theinvolvedbundleshavealreadybeendefined,it just remainsto construct
theaboveoperators.First recall that the operatorof orderq + 1,

fq~1: fk(x);, {O~fk(x)/0~ � q + l}, k =

sendsf C aut(X) to Jq+1 (f) C H~÷
1.Thealgebraicstructureof J1(H~)isthat

of a monoidwith thecompositiondefinedby

ji(gq)°ji(fq) = ji(gqofq)

whenevergq 0 fq is definedfor f~,, g,~,C I1~.The inclusion Hq+i C J1(H~)
togetherwith thegroupoidstructureofflq~ impliesthatthesectionf~’1oj~(fq)
isawell definedsectionofJ1 (Hq) overthe sectionfq’ ofq = idq of

17q~Thefact
that idq~iis also a sectionof 17q+1 C Ji(Hq) overthe samesectionidq of Hq
combinedwith thepropertythat J

1 (Hq) is anaffine bundleoverHq modelled
on P ® V (TIq) leadsus to constructtheoperatorD as

Xq = ~fq+i = t~’1’~’Ji(fq)_idq+i, (2.29)
whereXq is a section of the reciprocalimageof P ® V(Hq) by id~’ (induced
bundle), that is, a sectionof P ~ Jq (T). By definition of the operator75 we
obtain

77(gq~~ofq~i)= fq~i
1og~ioji(gq)oji(fq)_idq+i (230)

= fq~’1oDgq+ioji(fq)+Dfq+i,

which canbe recognizedasa gaugetransformationinducedby a sourcetrans-
formation.

Letus now introducethekey tool which is theSpenceroperator.
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Definition 2.15.The (linear) Spenceroperatoris a first order differential oper-
atordefinedby

D: J~~1(T)—* T*®Jq(T), (2.31)

~‘ Ii(~q)~q+i,
with

(D~q+i)~j= ôi~ _~+1i (2.32)

This operatorcanalso be definedin a non-linearway on Jq+i (X, X) in order
to measurethedifferencebetweenthe two sectionsf~+1 andj1 (f~)overf [22,
p.134].WehaveDojq~0.

Wemay extendthe Spenceroperatorto anoperator

D:A2T*øJq+i(T)_~#A5+lT~®Jq(T)

by setting

D(ce®c~~±i) dc~~q+ (—1)
2nAD~q~i,

V~EA2T~,~q+iEJq+i(T), (2.33)

whered is the differential on forms.
By linearity it is possibleto constructthe following algebraicbracket:

{Jq~i(T),Jq~i(T)}Cfq(T) (2.34)
from theusualbracketof vectorfields throughtherelation

{Jq~
1(~),jq~i(Pl)}~fq([~i]), V~,,1ET (2.35)

(givenby theLeibniz rule) by replacingthe derivatives8~and
82fl by the jet

coordinatesi~ and p12, respectively,seeformula (C.l) in appendixC. Note that
dueto the changeof the jet order in (2.34) this bracket is in generalnot a Lie
bracket.

Next for anyXq C P ® Jq ( T), by linearity we candefinetheoperator77’ by
setting

= ~ V~j~ET, (2.36)
with the following importantproperty:

D2=0 ~ D’oD=O.

Notice thatexpression(2.36) belongsto Jq...i (T).
Finallyaninductiveargumentprovesthatthegeneralfirst non-linearSpencer

sequence(2.28) is locally exactandadmitsthe restriction

0~F~~q+i ~T*®R~~A2P®R~_i, (2.37)

whichis notnecessarilylocally exactat P ® Rq. Delicateexplicit computations
provethat neither77 nor 77’ areformally integrable.Overcomingthis problem
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leadsto thesecondnon-linearSpencersequenceexhibitingbetterformalproper-
ties. Fordetails,seerefs. [21,22].

Also, thegaugetransformations(2.30) with respectto 7~q+ i restrict to P ®Rq
andexchangethesolutionsof 77’, i.e.,acton thesectionsof thekernelof 75’. We
define

Definition 2.16.The gaugetransformationof a sectionXq C T* 0 Rq (which is

icot necessarilya connection)is thetransformation

Xq*fq~’
10Xq0ji(fq) +

77fq+i (2.38)

forany (invertible) sectionf~+~OflZq+i.

Thisdefinition showsthelink with gaugetheoryandprovesthatnewoperations
might beperformedin theframeworkof groupoidswhichhaveno equivalentin
theuseof principalbundles.

Moreover,a direct computationof 77’ in local coordinatesfor q = 2 gives
torsionandcurvature,seeeq.(2.42) below.

According to ref. [22, p. 233], we can expressa section~q = Dfq.i-i C
KerD’ C P 0Rq locally by Xq(X) = (X~j(x))o<~~<q.Let us takeq = 1, and
sincedet(f”~(x)) ~ 0 definetheinverseby

g/~(x)fJr(x)= c~. (2.39)

Fora sectionf
2 : x ~ (x,f”(x),f/’(x),f1~(x)) of7~2,we successivelygetfor

77 [seeeq. (2.29)]

= 7712 E P® R1,

= ~ (240a)

X~j= g~(Oj~
1—A~f~’), (2.40b)

with the mixedobjectmadefrom one-jetsandfirst derivatives,

A~(x)= g~(x)ajfT(x) , (2.41)

and for 77, thecompatibility conditions77’, with q = 2 [seeeq. (2.36)], write

ö—8jX’~—X~
1+X~f,—~ = 0, (2.42a)

aix~i— ~ +

D~2

+ X[~X~’j—X~,jX~,—x~x~,,)= 0, (2.42b)

{X z.X 2)

andsoon.Equations((2.42)a,b)definea sectionofA
2 T* ®R

1, while eq. (2.42a)
alonedefinesa sectionof A

2 P® T, in theprojectivelimit ofthevariousSpencer
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sequences(2.37).Clearlyin thecovariantexpressionD’Xq by constructionboth
the D-term and the (quadratic)terms of the algebraicbracketare separately

covariant.

Remark 2.17.Noticethat, if Xq is (minus) a connection,cf. definition 2.10, i.e.,
= Xo = —ldT, then (2.40a) impliesthat the matrix A vanishes,A 0.

By eqs. (2.39) and (2.41) the projectionirgofq = f is a constantmap section
of X x X inducinga sectionfq of the principal bundleTIq(X,xo) for which no
prolongationcanbedefinedsincethe targetis fixed.

Writing75’x~= E A2T*®Jq_l(T) foranarbitrary sectionxqE T*®Jq(T),
we obtainascompatibilityconditionsfor75’ thefollowingBianchi identities[22,
p. 2361:

Dtqi(~,?7,C)+(~,ij,~) {~q_i(~,17),Xq_i(~)} = 0, (2.43)
which are the evaluationof an elementof A3 T* 0 Jq—2(T) on vectorfields

andwhere (...) standsfor the summationoverthe cyclic permutationsof its
arguments.In this intrinsicpresentationno tq is involved in Drq —1-

The correspondinginfinitesimal versionof the gaugetransformation(2.38)
is obtainedby definingan actionof R~~

1on P ® R~.This gives

Definition 2.18.For a sectioni~ + C R~+ ~,the infinitesimal gaugetransforma-
tion of a sectionXq C T~0 Rq reads

5Xq = = L(ji(~q+i))Xq+ D~q÷i, (2.44)
wheretheactionof the formal Lie derivativeL (Ii (~q+1)) on P 0 Rq C T* ®
.Jq(T) is split into an actionof the formal Lie derivativeL(i~Q~l)on Rq and
anactionof theordinaryLie derivative£(~)= L(Ii (~)) on T~,i.e.,with j (.)
denotingtheinterior product,

i(~)L(Ji(c~q~i))Xq = L(i~q~
1)(i(c~)Xq) Xq([~,c]) . (2.45)

Moreover,thereexistsan isomorphismof RQ+1 definedthrough

= ~q+i +Xq-i-i(’~) (2.46)
if and only if Xq.-1 is chosento beprojectableonto~, i.e.,Xq = 0 Xq+i

with detA � 0. Thustheinfinitesimalgaugetransformation(2.44) iswritten as5Xq = = — {Xq+i(),~+i}, (2.47)

wherethe algebraicbracket (2.34) on Jq~i (T) with valuesin Jq(T) occurs. It
is temptingto seethis last formula (2.47) as a generalizationof thewell known
“infinitesimal gaugetransformations”for a Lie group G, see,e.g.,refs. [1,25],

d~a= d~+ [a,~] , (2.48)
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wherea is theusual “Yang—Mills potential”a � T* ® ~ and .~is a map X —~

where g = Lie G, but as quotedabovethe algebraicbracketis no longera Lie
bracket.

Wenow give the explicit expressionsfor the variations(2.44) and (2.47) of

Xi C T~®R1[22,p. 272] [orseeformula (A.l) inappendixA],

= (3~k~k) + (~r8Xk+Xkö~rXr~k) (2.49a)
= (81~ik_~Ik) + ~ (2.49b)

= (3~~— ~) + (i~8rX~i+ 4,r8j~T + — x~~.’—x~) (2.49c)

= (Ot~’~— ~‘~) + ~ + ~ ‘~-~ ‘Yr) (2.49d)

In theparticularcaseof complexanalytictransformations(Cauchy—Riemann),
theprojection~‘r~’ 0 = ~ at order zero of a sectionof the Lie groupoid
Rq+ 1 is hereanarbitrary vectorfield, accordingto the following picture:

Lie Group — — — — —~ Lie Groupoid
gaugingof the groupG — — — — —~ sectionof thegroupoidR..,~

gaugingof the algebra~ — — — — —+ sectionof the algebroidRq

Applyingtwice thetransformation(2.44) andantisymmetrizingwith respectto
two Sections~q+1, ~q+1 E Rq+1 we obtainthe following

Theorem 2.19.The generalizationto Lie groupoidsofthe known resultsfor Lie
groupsis

[d~q~,,ö~q+i]Xq= ô[~iq+i,~q4i1Xq, (2.50)

where [, ] is a differentialbracketdefinedon thesectionsofJq (T) by

[~q,~q]= ~ + i(~7)D~q~i’l(~)DflQ~1. (2.51)

Proof SeeappendixA.

The differential bracket (2.51) is a Lie algebrabracketandit is well defined
thankstothecompensatingtermsdependingontheSpenceroperatorD [21,22]
(it no longerdependson thelifts of orderq + 1) andprojectsontotheordinary
bracketon T. Moreover,wehavethefollowingcharacterization[221for asystem
of infinitesimalLie equations[Rq,R~]c R~.Hencethis theorem simplyreflects
the Lie algebroidstructureof Rq.

Noticethat,sincethesecondformulation(2.47)dependsonthelift Xq~1 OfXq,

it shouldnothavebeenpossibleto useit in the abovemanipulations,although
it is similarto (2.48) for Lie groups.However,a directcomputationgives

[d,o lx~= öj~1,,}XQ, (2.52)
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Table 1
Lie groupsandgeneralizingLie groupoids

Concept Lie group Lie groupoid

Composition G x G— G R~X,~’ l~q 7~q

Inversion G —i C —~
1~q

Identity e E G idq E 1~

Lie algebra g = T~G Rq = id~1(V(R.q))C Jq(T)

Bracket [ç,~]cg [Rq,Rq]CR~

with the relation
{~+~‘‘i~÷~}= [çeq,~Jq]+ Xq([~,11]) + i(~)ô,~,~

1Xq— i(~)ó,i,+iXq. (2.53)

Wecansummarizetheconstructionin table 1 by sayingthatLie groupoidsseem
to provideanappropriategeneralizationof Lie groups.

2.3. THE LINK BETWEEN THE NON-LINEAR JANET ANDSPENCERSEQUENCES

Wearrive at themostdelicatepointof this first part, namelyto establisha
link of a cohomologicalnaturebetweenthe non-linearJanetsequenceand the
first non-linearSpencersequence.Wewill sketchthe mainpertinentarguments
makingthis resultpossible for a completeproofseerefs. [21,221.

Let & be a sectionof F satisfyingthe sameintegrabiity conditionsas to, i.e.
(2.24).We may alwaysfind a sectionfa C H~suchthat fq_

t(w) = th because
[I~ actstransitivelyin thegroupoidsenseon F, which is a quotientof Ll~.Since
F is a naturalbundle of order q, .J

1(F) is a naturalbundle of order q + 1.
Thereforewe may find a sectionf~.~1 C Hq+1 suchthat

fq~iUi(t0)) = j~(&) = j1(fq~(to)) = ji(fq)~(ji(to)).
Accordingly

= fq+i(ji(&)) = Ii(fq)(Ii(th)),

andtherefore

(fq~.’ioji(fq))~(1i(&)) = 1i(&).
Onecanprove[22] that this last relationimpliesthat

Xq = Dfq+1ET*®Rq(o)),

which thereforebelongsto KerD’, i.e,~‘x~= 0.
Thus we haverelatedcocyclesat F in theJanetsequence[i.e., I 0 Ji (to) =

c(to), 1011 (&) = c(&) for the samec (!)] with cocyclesat P ® Rq in the
Spencersequencerelativeto to therolesof sourceandtargetarereversedthrough
this correspondence.This fact is not evident at all andwill be importantfor
applications.
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Finallywecanremarkthat,if fa + 1, f~÷1Cflq + aresuchthatf~:~1(11(cv)) =

= j1(&),wededucetheequality(f~’1Ofq’~i)(Ji(&)) = ji(&).
Thereforeonemayfind a sectiongq~C

1~q+1(&) suchthatf~’~
1= f~4iogq~1.

The new section = ~f~+1 thusobtaineddiffers from theprevious~ by a
gaugetransformation(2.38) [22]. Wecansummarizethis resultin thefollowing
main

Theorem 2.20.GaugetransformationsatP ® R~in thefirst non-linearSpencer
sequencecorrespondto natural transformationsat F in the non-linearJanetse-
quence.

Remark2.21.Thereis a fundamentaldifferencebetweenthesetwo differential
sequences.The biggerthepseudogroupF, thesmallerthenumberof differential
invariantsin thenon-linearJanetsequence,but, thegreaterthedimensionof the
bundlesin thefirst non-linearSpencersequence.This factsuggeststhe specific
roleof thelattersequencein mathematicalphysics.

Remark 2.22. In theparticular situationof order one,q = 1 (which will bemet
in section3) thedifferential invariantsarefunctionsofj1 (f), f C aut(X), and
thus ~ of J1 (f1), which are invariantundertheactionof the pseudogroupF
at the target. However, the imagesby 75 of two sectionsfa+1, f~’÷1C +1 are
equalif andonly if f~,’~1= Jq+ 1(g) ° fq.i- 1 wheneverg C F. It follows that the
differential invariantsof order oneare functionsof the imagesXo of the first
Spenceroperator77.

Accordingly, finite (infinitesimal) gaugetransformationsof Xo inducefinite
(infinitesimal, which is the Lie derivative)naturaltransformationsof thegeo-
metric objectassociatedto the differential invariant. In particular,at the in-
finitesimallevel, it shouldbe noticedthat the differentialbracketfor Lie alge-
broids generalizesthe bracketfor Lie algebrasandprojectsonto the ordinary
bracketfor vectorfields at orderzero.Fora classicalexamplein theframework
of Riemanniangeometryandwell knownincontinuummechanicsof micropolar
(Cosserat)media,seeref. [22,p. 294].

3. The non-linear Janet sequencefor the 2-d conformal pseudogroup

Thepurposeof this sectionis to constructvariousnon-linearJanetsequences
for the pseudogroupF of complex analytic transformationsof a 2-d manifold
X. We shallgo into some detailseventhougha few stepscouldbe considered

~ This is due to thecanonicalprojection f, (f1 (X,X)) —~J~(I, X).
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trivial. But we prefertoinsiston somepointsof theconstructionhopingto help
the readercatch the philosophy.

We first considerthe Cauchy—Riemannlinear systemfor complexanalytic
transformations.In (real)jet coordinatesit is written as

R1: ~y~y220 (3.1)
(~y~+ y~= 0

andwe cannotice the following very particularpropertyof theone-jetcompo-
sition thatwill beusedlateron [22, p. 185], namelythat themultiplicationlaw
of Jacobianmatricesis commutative:

(M-N~(A-B~ — (MA_NB -(NA+MB)

~N M)~B A) — k~~NA+MBMA-NB

IA -B\ I’M -N\
= I II , (3.2)

\B AJ\N M)

whereA, B, M, N arerealnumbers.Therealdimensionof fibersof fl.1 is then
2(zero-jets)+ 2(one-jets)= 4 and thecodimensionof the Lie algebroidR1 c
.J1 (T) is m = 2. Sotherewill be two realdifferential invariantscharacterizing
7~1.

In orderto adaptthe notationwith the commononeusedin refs. [3—5,10]
we shallintroducesourcecoordinates(z,±)(z = x’ + ix

2), whereU U~and
~ will be the derivativeswith respectto thesecoordinates,andcomplex

targetcoordinates(Z,Z), (Z = y’ + iy2), with n = 2. SoF is turnedinto the
complexpseudogroupdefinedby the well known Cauchy—Riemannsystemof
PDEsfor holomorphictransformations13Z = 0. The system~ C H

1 (X,X) is
obtainedfrom the Cauchy—RiemannPDEsby substitutingjet coordinates

fl.1: Zz=0. (3.3)

Now, in this complexformulationthe only parametricderivativeobtainedby
prolongationat anyorderq is justa~zsince

~ (3.4)

in a multi-index notation.Thus,all thesymbolsMq = Rqfl Sq T* 0 T havereal
dimension2 andareinvolutive. It follows that thesystem1~is involutiveand
the variousprojections~ * fl~defineaflag configuration.It is in order to
limit the infinite number2 +2 +2+~~of arbitraryjets that the authorsof ref.
[10] triedto introducesubpseudogroupsof F offinitetype,thosehavinganeven
finite numberof jetsor equivalentlyhavinga null symbolat a certainorder.

Let usconcentrateon thegeometricobjectsassociatedto thecomplexanalytic
transformations.It is well knownthat the sectionsof the naturalbundleF can
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beidentifiedwith mixedtensorsJ C T* ® T suchthat J
2 = —idT. Whenn = 2

theparametrizationofageneralcomplexstructureJ canbecarriedoutina one-
to-oneway by usingthe Beltramiparametrizationof complexstructures,More
preciselythereis aunique(—1, 1)-differential ~ jt with ~ < 1 associated
to a given J through(see,e.g.,ref. [26])

= i - (i ~ 2~ ~ (1 ~_l( ~ , (3.5)
1—~/~k~—2[i —(1+~u)) ~ü 1) Vt 1)

whereJ
0 = (~t~)in complexcoordinates.The“complexnumber”~uis notcon-

strainedby any compatibilitycondition.The naturalbundleF in this complex
formulationcanbe identifiedwith asmoothbundleoverthesurfaceX with re-
spectto its C~-structureanda sectionp ofF is the (complex)geometricalob-
ject parametrizingthe complex structures,we refer thereaderto ref. [27] for
this point. The specialsection giving riseto F, the sheafof solutionsof R1, is
p = 0, that is theaboveJ0 or .j0 = (0 ~)in realcoordinates.ThereforeX is
endowedwith the complexanalyticstructuregiven by p = 0.

Now, the complexdifferential invariantof orderone for fl.1 is thefollowing
expressionin jet coordinatesand thereforegives the differential invariant for
theholomorphictransformations:

=~. ~I(j1(f)(z,f))u~ forfCF, (3.6)

asis readilycheckedby actingwith fl.1 at the target (Z is variedwhile z is kept
fixed).

ThetransitionlawsofthenaturalbundleF areobtainedby actingatthesource
with çt~ C aut(X), (z,±)~ (w,~); first we get the changeof differential
invariants

Z~ . -

— = ~,j1(~s)(z,z)) = —- -

Uw-&3w
and if (z,±;~u)and (w,tii; ii) arelocalcoordinatesforF, then thepull-backA~’
gives

- - - ~w+vo~(z,2)~th
F: (w,w) = ço(z,z)~p(z,z) = 13w + vo~(z,,d)Utii. (3.7)

In particular, if ~,C F, that is, a holomorphicchangeof coordinateson X, then
p behaveslike a (—1, 1)-differential (tensor!).

Accordingto example2.6 andeq. (2.13),for thegiven “null section” (abuse
of language)it is readily seenthat tP is indeedits pull-back by f~ C 17~,

~ Warning(!): This symbol J2 usedfrom now onhasnothingto do with a multi-index notation
asintroducedin section2.
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1(fi (z,±)) 2’ (O,fi (z,±)).UsingVessiot’sdefinition 2.3, fi C R.~if and
only if it preservesthenull section.Sincek is afl~1-differentialinvariant,lZi can
equivalentlybedefinedby its Lie form, thesectionp 0 being theevaluation
of cP at the one-jetof the identitymap

= tP(id1(z,z)) ~ Z;/Z~= 0. (3.8)
As anotherapplicationof section2, let usnow considertheequivalenceprob-

lem. Giving two sectionsofF, thespecialcomplexstructurep 0 onthe target
andthegeneral(arbitrary) complexstructurep on thesource,we considertheir
differential link (if it exists) throughthepull-back,cf. eq. (2.22),

p(z,±)= (ji(~Y
1(0))(z,±)=A’(0,j

1(~)(z,~)),

which is definedin complexcoordinatesby the systemof onecomplex (two
real) PDEs

= p(z,±), (3.9)
that is, we ask for a local diffeomorphismexpressedin targetlocal coordinates
by (Z,7) suchthat ft (Z,~)

1 (0) = p.

The analogywith the 2-d conformal pseudogroupcomes from an analogy
betweenthe realdefiningPDEs (3.1).

Remark3.1.Let us addthateq. (3.5) is relatedto theequivalentformulationof
the equivalenceproblembutin termsof thetensorJ. It reads

(Jo)~(y)~~~ = (JM).~(x)

with thecorrespondingdifferential invariant

(J
0)~(y)~Z7,

and1Z~will be equivalentlydefinedin the Lie form

7~i : (Jo)~(f(x))fJ(x)gj~(x)= (J0)~(x)

whereg~(x)f((x) = of, seeeq. (2.39).

Any subpseudogroupF’ c F of F will be definedby a subsystemand of
courseit will haveingeneralmoredifferentialinvariants.Hereafter,asexamples,
we shall restrictourselvesto the affine and projectivesubpseudogroupsof the
complexanalytictransformationswhile weshallfind againby anothertechnique
thecorrespondingresultsstatedin ref. [10]. The generalprocedureconsistsin
looking for Lie subgroupsof greaterandgreaterdimensionin orderto describe
by a progressivesaturationprocedurethejetsof fl.q whenq —* ~o.Themethod
outlinedhereshowsthatonecanavoidthe useof the “linear connection”built
in ref. [10]. Thequestionconcerningthenecessityof extendingtheconstruction
of this “connection”at higherordercanbe thusaddressed.
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Theaffinecase. Translatingtheresultsof section1 into complexcoordinateslet
us characterizetheaffine complextransformationsby its differential invariants
[seeexample2.9(i)] we haveto solve the secondorder non-linearsystemof
PDEs

= ~ ~aff = u. (3.10)
Weshall usetwo methodsfor finding the compatibilityconditionswhich must
existbetweenthedifferential invariantsp and u.

The first way is to noticethat82p + p0 u — ~l’uis anewdifferential invariant
[22, p. 212] (sinceit canbe shown [21,22] that all (formal) derivativesof a
differential invariantare againdifferential invariants)and it is theonly linear
combinationinvolving derivativesof p andthe first orderderivativeof u not
containingderivativesof Z of order � 3. Henceit mustbe a rationalfunction
of (u,8p,8p,u)which happensto be here —uOp. Consequentlywe get the
compatibilityconditionbetweenp and u

02p+pOu—c9u+uOp = 0. (3.11)

Secondlytheproblemcanalsobesolvedbyconsideringthesecondorderlinear

systemof PDEs
(a—pa)Z = 0, (32—uU)Z = 0.

This systemis not formally integrableandwehaveto follow thegeneralproce-
dureto transformit into a new formally integrablesystemin orderto find the
integrability conditions.Sinceit is a finite type system,this standardprocedure
[20] allowsus totransformit into a first ordersystem.Sucha procedureyields
here (a chance)to introduce a linear condition which will becomea Frobenius
typelinearsystem.Elementarylinearalgebraleadsto recoveryof thedifferential
condition(3.11).

Theprojectivecase. In a similarway, the projectivecomplexanalytic transfor-
mationscanbeidentifiedthroughtheirdifferential invariantsof orderthree[see
example2.9(u)]. We are then interestedin solving the third order non-linear
system

ro 133Z 3 7132Z\2
~P’~3u{Z,z} -~-—~-~-~-) =v. (3.12)

Eliminatingthejetsof orderfour we look for theremainingterms.This leadsto
thefollowing compatibilitycondition:

O3p+2vUp+pUv—~v = 0. (3.13)

Howeverthe correspondingsystemof PDEs now becomesnon-linear in the
secondprocedure

(O—p13)Z = 0, OZ83Z—~(U2Z)2—v(8Z)2= 0.
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Of coursea direct study of formal integrability providesthe samedifferential
condition (3.13) as before,but now the systemcanonlybe transformedinto a
non-linearFrobeniustypesystem.Indeedintroducingthenewjet variables~ =

Z~for one-jetsand ~ = ~ for two-jetswe get thefollowing non-linearsystem:

OCT = pT + Opc

Or = ~r2/CT+ va, = 2i9p~+ i92~w+ ~iir2/a + pva.

It is purechancethat the (rational) changeof jet variables

(c,r) ~—* (yi,~): a = ~ir2, r =

linearizesthe above systemandallows us to introducea linearconnectionasin
ref. [10]. SothecorrespondingSL(2,C)-flat bundleisthat ofthetwo-jet bundle
overthe RiemannsurfaceX madefrom (—~,0)-differentials.

Remark3.2.Let ~ be a holomorphictransformation,i.e. ~ e F. The transfor-
mationlawundera holomorphictransformationat thesourceof the affine dif-
ferentialinvariant ~aff providesthepatchingrules for constructingthe natural
bundle [cf. (2.17)]

F~: z’ = ~(z) ~ u = u’8ç~+ 1324~/13~~ (3.14)

anda given sectionu of F~ will define anaffine structuresubordinateto the
givencomplexstructureon X.

Similarly, for theprojectivecase,thechangeof theinvariantdifferential ~~(OJ

inducedby a holomorphicsourcetransformationleadsto thefollowing natural
bundle [cf. (2.19)]:

= ~,(z) =t’ v = v’ (Uçs)2 + {~,,z} ; (3.15)

a fixed sectionv of F1~~~jwill endowX with a projectivecomplexstructure.
Let us make a connectionwith the classicalliterature.The patchingrules

(3.14) and (3.15) arethoseconsideredby Gunning [28] for constructingsuch
structureson a Riemann surface. But with our definition 2.10, we cannotcall
them affine or projective“connections”asGunningdid. As quotedin remark
2.11 they arenot a splitting of a certainshortexact sequence,but are actually
geometricalobjects,namelysectionsof certainnaturalbundles.

Remark3.3.Since the affine group is a subgroupof the projectivegroup one
has the relationv = Uu — 3u2 , where u and v are definedin eqs. (3.10)
and(3.12),respectively.Theeliminationof u betweenthis lastidentityandeq.
(3.11) providesthecompatibilitycondition (3.13).
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Remark3.4.Dealing with the general affinestructure (p,u) or thegeneralpro-
jectivestructure (p,v) we mayintroduceonthem thegeneralschemeof thefor-
mal Liederivative.The correspondingsystemsof infinitesimalLie equationsare
now linearandoffinite type.It follows thatactuallytheir integrabilitycondition
canbe introducedin thegameby meansof a linearconnection.

In an equivalentway the SpenceroperatorD : R~+1 T* 0 Rq now
becomesan operatorD : Rq 1” 0 Rq becauseRq+i = R~(the fact that
the symbolMq+ 1 = 0 is equivalentto the finite type property).However, the
integrabilityconditioncomingfrom thecurvaturemaybeof secondorderin the
structurebecauseof theappearenceof certainstructureconstants[existenceof
someintegratingfactorsas in example2.14(iv)].

Example3.5.Let us consider the pseudogroupdefinedby

Iy1=x1+a
UZ=l,OZ=0~Z=z+(a+ib)~< -

L~~2 = x2 + b

Thenthe correspondingequivalenceproblembecomes

Z/UZ = p, UZ =

and leadsto the compatibilitycondition

aw-pow-wap = 0,

as a way to saturatethe first orderjets. The correspondingstructureis that of
a Maurer—Cartanform or in otherwordsF = P xx T*, andyields the well
known Maurer—Cartanequationsinvolving two structureconstants.

4. The first non-linear Spencersequencefor the 2-d conformal pseudogroup

Ourgoal is to build the first non-linearSpencersequencefor the samepseu-
dogroupF of complex analytic transformationsthat we have in mind in the
particulardimensionalcasen = 2. It turns out as a very surprisingresult that
thegeometricallywell definedformulasthuscomputedreproduceexactly those
coming from the“gauging” procedurea la BRSgiven by ref. [11] for theVim-
soro case.

Ourstrategywill bethefollowing. Sincetheauthorsof ref. [11] usea bigraded
differentialalgebrainwhichthecurvature(in thesenseof Maurer—Cartan,grad-
ing of forms) and the infinitesimalgaugevariation (in thesenseof BRS, ghost
grading)are mixedtogetherthroughthe so called“russianformula” [1,2] the
bigradedforms describedin ref. [11] will be decomposedwith respectto the
ghostgradinginorderto exhibitthepropergeometricalsignificanceofthe“gauge
fields”, which are viewed thereas one-formswith valuesin some infinite Lie
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algebra,namelythemaximal propersubalgebraw
2 of the Virasoro algebra.To

savespace,furtherdetails concerningref. [11] aredeferredto appendixB to
which the readeris kindly referred.

Thus we assertthat the componentsof ghostnumberzero of the vanishing
bigradedcurvatureconditionsworkedoutin ref. [11], formula (6)~ [or eq.
(B.4)], areactuallythe compatiblityconditionsTq~ = D’x~ = 0 (2.42) in the
first non-linearSpencersequence.Moreoverthecomponentswithghostnumbers
oneandtwo will be relatedto theinfinitesimalgaugevariations (2.44) [in fact
(2.47) aswe shallsee].

4.1. THE SPENCERSEQUENCEIN A HOLOMORPHIC REPRESENTATION

According to the resultsobtainedin section 3, the pseudogroupF is defined
by an involutive systemR1 of finite Lie equations,seeeqs. (3.3) or (3.8). Let
ustakethe one-jetft C R.~to be infinitesimal,

ft: (z,±) (z,.~Z,Z;Z2,0;0,Z2)

= (z,±;z+t+’.’,±+t+’.,l+t~+’’’,0;0,l+t~+..’),

where (~Z ,~Z) denotesthe componentsof a smoothvectorfield. Thenthefol-
lowing linearsystemsof infinitesimalLie equationsRq+ 1 correspondto thevar-
ious prolongations~ Vq � 0, seeeq. (3.4):

m r i-i-~\. zz (~ n n
1~q+ICJq+1~.hI. ~ “a+t,~-’~ v<aq,
~g~’~q+i ‘~o (~z~Z)CT (4.1)

This definesa linear system{{q}, Rq} over the positive integers q with the
projections ~+r : Rq+r Rq, Vr � 0. Let us denoteits projectivelimit by

= pr lim Rq. Let us recall the (restrictionof the) first non-linearSpencer
sequence[cf. (2.37)],

0 .- F ~ ~q+t ~ T* 0 Rq ~ A
2T~®Ra_i. (4.2)

Following ref. [29] (first article, p. 433) for each q the vectorbundle R~
canbe complexifiedand it splits into R~’°~ R~’~where R~’°is a holomorphic
vectorbundleandR~’1is thecomplexconjugatevectorbundle.Theprojections
~+r inducethe projections~ —~ R,~’°,and in particularR~,°= T”° is the
holomorphictangentbundleof X andthe projectivelimit R~0= pm lim R~’°is
defined. So due to thecomplexdecompositiona (real) section ~ of T* ® Rq
splits into

XqXqZEDX~,with~=~,

C R~’°: ~ = 0, 0 ~ ~ < q, (4.3)

~ After correctionof amisprint in thesummationterm,kindly communicatedto usby R.Grimm.



S. Lazzariniandf.-F. Pommaret/ Lie pseudogroupsanddifferential sequences 73

thanksto (4.1) andx~C T* ® T”0. Next, in this holomorphicrepresentation
let uswrite the intrinsic formula~s(2.42) for thevariousprojectivelimits taking
intoaccountthat~~C PoR~’°.Thanksto thedecomposition(4.3),thegeneral
curvatureconditions~‘ canbewritten downonlyfor thecomponentsof~~and
we getsuccessivelythe following intrinsic formulaswith respectto the complex
analyticstructureon X:

I ~q = 2.ç
I~ z__

13_ z — z -— z z - z_ 2 —0
5~ zXz,z zXz,z Xzz,z X,zX zz,z+ X ,2X22,Z —

13 - 13 — 2 -— Z Z -zX zz,z zX zz,z X zzz,z X,2X zzz,z_ z z — z 2 _L 2 2 —0
/.,z/. zzz,z I. z,zAzz,z A. z,zA.zz,z —

(4.4)
andso on, wherefor q = 2 the commutationrelation (3.2) for the one-jets
implies that the quadraticterms appearingin eq. (2.42b),~ —

vanishexactlyasfor the termsinvolving M
0 in formula (9) of ref. [11].

Next, in a real representationsubstitutingrelation (2.40a),x~= A~—

into the generalcurvatureformulae tq_i = D’Xq = DXq — {Xq,X q}, section
of A2T* 0 Rq_i {cf. (2.36)], we get for the various componentsof 1q1 the
following systemof covariantPDEs,with 0 < al � q — 1:

= Oix~,1— o
1~~,~—Acx~+1,,1+~ , (4.5)

d

where dotsrepresenttermscontainingonly Xp for p ç H in a non-linearway.
Noticethatineachequationofthis systemthehigherordertermin thex’~which
hasbeenisolatedis linear. The substitution(2.40a)spoilsthe separateintrin-
sic natureof Dx~andof the quadraticterms~ in rq_t but the wholeex-
pressionstill remainscovariant.Worse,it breaksthe naturalityof the Spencer
operatorand the algebraicbracketby reintroducingthe usualexterior deriva-
tive d plus somequadraticterms #6 In particular,performingthis splitting in
complexcoordinates,it is writtenas

~~=A~—l, ~ (4.6)

andby substituting(4.6) in (4.4), taking into accountthatx~are q-jet valued

one-forms,we obtainthe following covariantformulas:

*6 This is thenatural way 122] to recovertheusual Cartannotionsof torsion and curvature
whenever the second order jets vanish (affine pseudogroups).
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I ro {o2A~— — ~ + Ar2X2
2,

2 = 0,
I ~ Z.13 2 —A

2 2 - A~ Z

I~ ZXZ,z ZXZ,Z

2X~2+ 2Z zz,z—

- r2 (4.7)
13 Z j~ z —A

2 z - A~
ZXZZ,Z zXzz,z ZXZZZ,Z + ~

— z z - 2 Z —

xz,zxzz.z+ xz,~xzz,z—

Remark4.1. Let us point out that the expressionof TO is recognizedto be the
torsion,but in the generalcurvaturer

1, sincethe quadratictermsin one-jets
cancelout, thereremaincross-termswhich areproductsofsecondorderjetswith
thematrix A and thereforecannotbe identifiedas theusualCartancurvature.

Finally, in this complexrepresentationthe first non-linearSpencersequence
(4.2) canbeholomorphicallydecomposedas

OF~~q+i ~T~0R1,0~A2T*®Rl,O1 (4.8)

wherethe operatorsaredefinedby

= (~fq+t)~ Xq~ (49)
~ ~

with of course~‘o’° = 0 andnotice that the algebraicbracketis restrictedto
R~’°,seeeq. (C.3) in appendixC.

Going further,we would like to recoverthealgebraicformulationasstatedin
ref. [11]. Thiswill beachievedby somecombinatorialchangeofjet coordinates
and, aswe shall see,it will be heavily relatedto the formal propertiesof the
variousprolongationsRq~t.For a fixed order q in jets let us first redefinethe
componentsof the section~ of T* ® R~’

0by

~ for0�~ct~�q, (4.10)

sincethe jet coordinate~ is relatedto the aith derivative in someTaylor
expansion.ThereforeO~.is ratherconsideredas relatedto somepowerseries
and is anothersectionof P 0R,~,’°. Havingthis in mind, for a fixed lenght
0 < cs~<q — 1, thecomponentsof thegeneralcurvature(4.7) canbe redefined
as well:

F~’ H!

= OzO~ — — (Its + ~ —
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= — — (Ia~+ 1) (A~O~~1~,2— A~O~~1~,2) (4.11)
ml al—i+ ~ ~(I~I— IvI — 1) (Of z~~+1,2—

IAI=1 Iv~=O

wherewe haveusedthe combinatorialpropertiesof the algebraicbracketre-
strictedto Rq,seeappendixC, eq. (C.6),andoncemorethechange(4.6). Then
let usset successively

al-i ~ forl<IaI<q—l,

A~, forts = 0. (4.12)

With n = al — 1, k = Al — 1 and! = v~for n � —l weobtainthetwo-form in
termsof the exteriorderivative,

F~= dO~+ k,1=-t (4.13)

which is exactly the two-form of ghost numberzero of the bigradedcurva-
ture form F~given in ref. [11], seealso appendixB, eq. (B.4). Notice that
the redefinition (4.12) completelyhides the jet nature of the quantitiesat
hand.Moreover the structureconstants(k — I), which are at first sight of
an algebraic nature, come directly from the jet properties of R~’~1as shown
in appendixC. Moreover the explicit formulas for the operator D’ in the
Spencersequenceleadus to recoverthe key formulas of ref. F 11]. The exte-
rior system(4.13) labelledby the integer n � —l is then equivalentto that
expressedin termsofjets (4.7).

Assumingthat we can solve the system(4.7), then the device of ref. [11]
for writing compactlythe successivecurvatureF~canbe reformulatedin the
following way: As in ref. [11] let us introducea complexvariable t and theone-
form t~,which canbe formally expandedin powerseriesas

al
= ~ tIn

1 ~l~~—t= A2 + >
1—~x~, (4.14)

lal�1

by virtueof (4.10)and(4.12).Sothis simply showsthat in factwe areconcerned
with formal Taylor expansionof the one-formô with valuesin R~.Forthe
curvatureformsearlierdefinedin eq. (4.13) a two-formwith valuesin R~°can
besimilarly constructed,

tInl
F = tjalFlal_l = ~ ~ (4.15)

lal�0
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4.2. THEREAL RESOLUTIONOF THE CURVATURE EQUATIONS

Letusnow discussthegeneralresolutionof thesystem(4.5) of PDEs.Suppose
thatA is a givenarbitrarynon-degeneratematrix,detA � 0. OnceA isfixed the
systembecomeslinear.Startingwith theequationTO = 0 (null torsion),we may
thenfind asolution~,of~’~1= = 0. By inductionwemay find asectionX~
solutionOftqi = 0. Assumethatxq_ihasbeendeterminedinductively,thenat
thenextorderq we haveto solve (4.5) for ~ al = q — 1. However, it must
benoticedthat, contraryto Drqi definedin (2.43),thedirect computationof
dtqi from (4.5) givenby the system(with 0 < al ~ q — 1)

13 (• k’ — Ar (13 1 ~. 1
kta,jj + \l~J~ 1 — k’ iXa+1,j jXa+i,,i/+ ‘J,J~ / +

involves tq definedin eq. (4.5). That is to say, in ajetformulationtaking the
differential of

1q1 is meaningless.The inductive step usedby the authorsof
ref. [11] leadingto an algebraicresolutionof their curvatureequationsconsits
extactly in applying the exterior derivative to curvatureforms and therefore
cannot be repeatedhere. Overcomingthis bad stateof affairs consistsin the
eliminationof thehigherorderjetsimplementedthrougha “twisting” by A. Let
ussetXq = o,~oA,that isin componentsx~,

1= A ~ 0 ~ al ~ q. Substituting
this into eqs. (4.5) we easily get

— ~ak+ij,j = B1B~~(13rX~,s— i9sX~,r+ ...) , 0 � l~~l� q — 1 , (4.16)

whereB = A~ anddotsstandfor lower orderjets. So solving the systemin
termsof aq is equivalentto solving it in Xq sinceA is not degenerate.The left
handsideof (4.16) is relatedto thealgebraicSpencerô-map [19—22].Let us
interpretthis in our particularcase.Recallthat for any aq C T* 0 Mq, whereMq
isthe symbolof Rq, we maydefinedefinethefollowing map:

ö: T~®MQ+l~_*A
2T*0Mq

by (ôaq)~= dxt A o~,,0 ~ al < q — 1, which in local coordinatesis written
as (ôo~)~

11= ~ — ~ It is easyto checkthat ~ is nilpotent,doô =

0. So solving eq. (4.16) amountsto solving the Spencerô-cohomology[21,p.
580], [22, p. 2361.Wecannotinsist on this technicalsteprelatedto thesymbol
M, of K,; we canjust say that the study of the Spencerc~-cohomologyfor the
symbolM, showsthat the cohomologyis trivial andthat M, is involutive. (In
fact in a generalsituationthe solvability of the generalcurvatureequationsis
equivalentto the two-acyclicity propertyof the symbolof the given algebroid
with respectto the Spencerc5-cohomology,and involutive meansn-acyclicity
wheren = dimX.)

Sothanksto this algebraicstructureit is possibleto solvethecurvatureequa-
tions (4.5) asa given systemof PDEswithout integrating.The price to pay in
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doingsois the loss of thecompatibilityconditionpropertycarriedat thebegin-
ningby (4.5). Thus this leadsto the problemof the local exactnessof the first
non-linearSpencersequenceat P ® Rq, that is, givena sectionX~Of T~0 Rq,
doesthereexist a sectionf~+i~ suchthat ~fQ+1 = Xq? This is a prob-
lem which is solubleby mathematicalanalysisand is concernedwith theellip-
tic property.Here,sincethe Cauchy—Riemannsystemis elliptic [29], the local
exactnessis insured.

Remark4.2. The aboveprocedureusedin order to cancelout the higherorder
jets is just theway to passfrom the first to the secondSpencersequenceafter
twisting by A [21,22].

In orderto show that this method supersedesthe famousCartantheoremfor
ordinary differential forms which underliesthe algebraicinductionusedin ref.
[11] let us do explicitly the caseq = 1. Following step by step the above
procedure,let x 1 be a sectionof TX ® R, andconsiderits twistby A, x, = c ,oA.
Theneq. (4.16) reads

0~,s— ~ = B,~B(81A
1, —

whichisjust thecoboundaryconditionwith respectto thes-map.Dueto thedi-
mensiontwo this lastconditionis trivially satisfied(three-form)ascanreadily
beseenfrom eq. (4.7). This insuresthat z

0 = 0 hasa solution.Moreovercom-
putingdirectly dr0 and taking then r0 = 0 we get [thanksto the commutation
relations(3.2)]

A~t~,11+ (i,j,k) = 0,

which is the crucial identity for the inductionprocedureof the construction
shownin ref. [11] (cf. thetechnicallemmaafterformula(7)), butassaidabove
this is meaninglessin ajet theory. Recallalsothatwehavemadetheassumption
thatA is an arbitrarynon-degeneratematrix. The arbitrarinessmust therefore
beanalyzedsincethereareno differential equationsconstrainingthe matrix A.
This turns out to beoneof the mostimportantpointsof this part.

4.3. THE LINK WITH THE COMPLEX STRUCTURE~u

Heretoforein dealingwith theSpencersequencewe havenotspokenaboutthe
complex structurep which is the main ingredientin theconstructiongivenby
ref. [11]. How shouldoneintroducep in the Spencersequencewhile it liesin
theJanetsequence?Theanswerwill befurnishedby theanalysisof theprevious
section3 asappliedin thepresentcasethanksto the main final theorem2.20of
section2.
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Recall that any fq+i belongingto theqthprolongationlZq~I [cf. (3.4)] ofR1
hasprojection

0
= fi C

3~i, f~ = — I , Z
2 ~ 0,

0 Z2J

and that ir~of, = f C aut(X) is an arbitrary diffeomorphismpreservingthe
orientation.Thanksto thedefinition (2.41) of the matrix A we have

A(z,±) = ~~—132Z, A!(z,.~) = ~~-l32Z (4.17)

(ofcourseA~~ 0 by construction)andfrom expression(3.6) of thedifferential

invariantof order onefor F we get thefollowing equality forf E aut(X):
(z,±)~ (Z,7), ~(j,(f)(z,2)) = A!(zM (4.18)

e92Z A~(z,z)

or directly in termsof the tensorJ accordingto remark3.1,

= (A~)~(x)(Jo)(x)A~(x), (4.19)

which are two expressionsfor the samedifferential invariant of order oneac-
cordingto thecomplexor realformulation.This is anapplicationof the lastre-
mark 2.22 of section2. Also formula (4.18) [or (4.19)] connectstogetherthe
non-linearJanetsequenceandthenon-linearSpencersequenceand it istheonly
way to relatethembecausethedifferential invariantis of orderone.

Now solving the equivalenceproblem (3.9) meansthat for a given complex
structurep, l~l< 1, on the sourceseekingfor all sectionsfi C ~ suchthat
ir~cf, = f E aut(X) is a solution of the equivalenceproblem.We obtainthe
important (pointwise)relation

—1 - EJ5Z A~(z,±)p~(z,z) = .ii(f) (0)(z,z) = = (420a)
t_~z J-lztZ,Z/

-t~ J,~(z,~) =A(z,~)Jo(z,~)A(z,±), (4.20b)

Dueto the dimensiontwo thereis no compatibilityfor p and thusA isfreeof
differential conditions.Apart from the conditionlA~/A~l< 1, A is arbitrary
sincep is. Thereforetheprocedurefor theinductiveresolutionof (4.5) described
abovecanbeapplied.

Remark4.3.Thisillustratesthedelicateresultexplainedin theproofof theorem
2.20. It is clear that the Spencersequenceis relativeto the complexstructure
p = 0. But throughthe equivalenceproblemthe complex structurep = 0 is
put on the target while the complexstructurep lieson thesource.Somehowwe
might saythat theSpencersequenceis built for thetargetandthe gaugetheory
sits on the source.
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Accordingly, a finite (infinitesimal) gaugetransformationof .Xo (A) inducesa
naturaltransformation[seeeq. (3.7)] (Lie derivative)ofp. Let usbemoreex-
plicit aboutthe infinitesimalgaugetransformation.Recallthatan infinitesimal
gaugetransformation,seedefinition2.18, is inducedby a section~, of the al-
gebroidK,, cf. (4.1). Takingthevariation (2.49a)of~oandinserting it in the
identity (2.40a)we canthenwrite downtheinfinitesimalgaugetransformation
of the matrix A in complexcoordinateswith the notation(~~~ô)~Z13~ + ~
for vectorfields,

ÔA~= (~.O)AZ + A~13Z~
2+ A~8Z~5—

= (~.13)A~+ A~Ô~2+ A~8~—

which dependson one-jets.Next with (4.20) a directcomputationgives

=

= (~O)p~+O~~ (4.21)

wherein the courseof the computationall the jet dependencecomingfrom dA
havecancelledout. It is rathersurprisingthat the Lie derivativeof p (usually
inducedby adiffeomorphism)isdirectlycomputedfromtheinfinitesimalgauge
transformationof someobjectsdependingonly on 1?~,.

It isalsoof interesttoperformthegaugetransformation(2.49b) for~oinduced
by the isomorphicchangeof “generators”(2.46) in R~~ Forconveniencein
order to relatethe notationwith some previousworks [3,7,8], let us rewite
(2.46) at orderzero as

~ ~+Xo(i~) =A(i~), detA�0. (4.22)

It is easily checkedthat~E,E R,.Thenwe get the well definedexpression

= (13~ZpZ13~2 + ~(8
2A~_O±A~)) , (4.23)

wherethe dependenceon A is quite normal due to the change (4.22). With
respectto this changeof generatorsthe dependenceof the variationon thelift
x, of Xo, cf. (2.47), implies theuse of the compatibilityconditionTo in (4.7)
and thusderivativesof A occurin doing so.

Let us say a little bit moreabout this matrix A. The readercould identify
it with the socalled“zweibein” as introducedin refs. [7—9]thanksto relation
(4.20).The ambiguity in the determinationof A canbe lifted in the following
way. Let ussupposethatan°Afulfilling thepointwiserelation (4.20) hasbeen
foundand let A = fi

0A be anothersolution of (4.20),wherethe matrix fi has
to be determined.By assumptionon A and thanksto (4.20b) we musthave
[Jo,/J](z,.f) = 0. The generalform for sucha matrix commutingwith J

0 is
(see,e.g.,ref. [26])
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- (b(z,~) 0
/J(z,z) = ( -

0 b(z,~)

whereb (z,±)is anon-vanishingcomplexvaluedfunction.Thusanytwo by two
matrix valuedfunctionA = ft ~AonX is thegeneralsolutionof theequivalence
problem (4.20) wheneverthe matrix °Ahasbeengiven. To get sucha special
solution0A of (4.20) we canreadfrom (3.5) (recall that l4l < 1)

°A= (l ~ , (4.24)

\~u 1)

andhencethegeneralform of A is written as

/b bp\
A(z,±) = I I (z,~). (4.25)

\~&u 13)

4.4. THE “GAUGE FIXING” AND THE SPENCEROPERATOR

Let us now use in moredetail theholomorphicrepresentationalreadyexhib-
ited above.Recall that thefirst non-linearSpencersequence(4.2) startswith

0~T~1~q+i~*T*®Rq (4.26)

with Dfq~i = .t~’, 0 J~(fq) — idq÷ianda transformationf belongsto the
pseudogroupF if andonly iffq+i = Iq+i (f) since~boJq~i = 0. Accordingto
the complexformulationof the first non-linearSpencersequence(4.8), we are
in fact concernedonly with theholomorphicvectorbundleR~’0.We canrather
write (4.26) as

~ (4.27)

with, of course,~“°oj~+
1 = 0. Thedifferential operator~ splits intothesum

of two operators,namely

—,o ‘ ,i (~‘ :~q+i T*1,0®R~fb,D’ =D-~-V ,< (4.28)
~ ~“ : T*o.l 0 R~’°

where ~‘ andV” are of types (1,0) and (0,1), respectively,accordingto the
usualsplitting d = 8 + ~ of the exterior differential operatord. Taking the
imagein R~’°we have

= ~“°fq+i = ~‘fq+i + ~“fq+i (4.29)
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with, forO �laI�q,

(~‘fq-i-i)a,z = X~,z, (~‘f~÷,)0,2= 0, (4.30a)

(~“fa+i)a,z = 0, (~“fq÷i)a,~ X0
2.t• (4.30b)

We can thususethe fundamentalinductive formula [22, p. 2291 defining in
local coordinatesthe section~ of TX 0 R~°in order to computeV’fq+i and

~“fq+i, respectively,that is [with eq. (3.4)],
lal al

~‘fq+i: ~ ~ (lA~±~iIl)!zAlxzk~+~= l3zZa — Za+i, (4.31a)
Al=0l~l=O

ml al

~°fq+i : ~ (IA~+k/D!zA,xz d~÷~= ~ (4.3lb)
Al =0 l’~l=0

where in the right handsides we recoverthe componentsof the (non-linear)
SpenceroperatorD, see(2.31).

Letusnow concentrateonthekerneloftheoperatorD’. The ~‘ operatorisonly
concernedwith the componentsfaZ(Z,~) = Zn, 0 � lal ~ q + 1, of a section
f~+iof ~~q+1~From (4.3la) it is readilyfound thatfor eachpositive integerq

Ker~’= {f~+iC 1?.q~i~i/Za= I9~~’Z0� lal � q + l}, (4.32)

butthis doesnotmeanatall that t~~1ofq~~= f belongstoT sincef C aut(X)
hasno constrainton fI~Zbecause~‘ is only a partof the operatorD.

In particularfor q = 1, a sectionf, C ~ is in thekernelof~’if andonly if
= Z

2, or in otherwords, seeeqs. (4.6), (4.17) and (4.25),

~‘fl=xz2.=0~==i1A~=bul. (4.33)

Demandingthat the sectionIi C Ker ~‘ imposesthe conditionon the non-
vanishingcomplexfunction b thatit betheconstantfunction 1, eq. (4.23) takes
theform

= — ~ + ~~Z13pz , with E
2 = ~Z + pgZ, (4.34)

which is exactly the BRS transformationfor p usedin ref. [11], or see(B.l).
The changeof generators~E’2= ~z + pg5 first found in ref. [30] reflectsthe
complexstructureof aut(X) relativeto the complexstructurep andis deeply
relatedto the socalledchiral splitting (or holomorphicfactorization)property
of 2-d conformalmodels[3—7,30].

The conditionb = 1 which occurs here for a purely mathematicalreason
providesin our opinion thecorrect explanationfor the suitable“gaugefixing”
performedin ref. [11].

The componentof ghost numberzero of the algebraic connection[2] M’
canreadilybeidentifiedwith our “zweibein” matrix Agivenby (4.25) in order
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to haveawell definedjet formulationandapplytherecursiveconstruction.This
explainsthea priori choiceof M’ madein ref. Li 1].

But we said that the Spencersequencefor the Cauchy—Riemannsystemis
locally exact,that is, we aresurethatall solutionsx~of thecurvatureequations
(4.7) areof the form~~= ~“°fq+i with f~÷iC ~ According to this we
may saythat the ‘flelds”x~comefrom “potentials” f~,.~ Using eqs. (4.31)
for eachq � 0 thecomponentsof the section.~ are thusfound inductively.

Startingwith a sectionfi C Ker ~‘, i.e. 8~Z= Z2, which correspondsto a
“gaugefixing” in the“spaceof potentials”,seeeq. (4.24),eqs. (4.6) read

~~=°A~—l=0, X~=°A~=P,

andtheyimply at orderq =

= (132Z2 — °A~Z22)/Z2= (13~Z— Z22)/i9zZ, (4.35a)

= (35Z2— °A~Z2~)/Z~= (3~O±Z—

=

13zP~+ l1~X~,
2, (4.35b)

where relation (4.20a)hasbeen usedto obtain the lastequality in (4.35b).
Moreoverxf~appearsas a free parameter.Thesecomponentsare the general
solutionsof the equationr0 in (4.7),

13zPz~ X~,±+ /4X~,
2= 0, (4.36)

which is exactlytheghostnumberzero part (B.6a) in appendixB butwith the
jet geometricalmeaningin addition.Notice that a particularsolution for this
equationis

= 0 , = Ozl2~, (4.37)

but the measurementof the distancebetweenthe generalsectionx ~and this
specialsectionO~: (z, ±)i—. (z,z,p~,0z14) is achievedby theoperator~‘ by
demandingthat the sectionf2 belongsto its kernel. This ambiguitycomputed
herewithouttheexteriorcalculusmethodis exactlythat resultingfromthecom-
putationmadein appendixB, eq. (B.7). Indeedwe havefrom eqs. (4.35)

X 132p~dz+ X~.~(dlz+ p~dz)= °Xf+ X ~ OAZ.

Performingagaugetransformation(2.49d) with ~ C R~’°we obtain

-~ 2 — ~ ~Z Z ~‘Z 4Z~ZXZ,Z — z~z + Xzz,z z~zz

-~ Z — Z ~ZAZ~’ZXz,~— Z~z + Xzz,i’’ z’~ zz

~ This interpretation largely differs from ihat adoptedin classicalgaugetheory,see eq. (2.48);
for mechanicalmotivationsandmathematicaldetails,seeref. [22].
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and thusby usingeq. (4.7) for r1 thejetsof order two occurring in theabove
variationsare eliminatedandwe get from (4.36)

~ Z\ — ~‘Z(J~ 213 2

~ zPzi —

2~z+ ‘. zXz,z zXz,z
i613~~~—X,

2WsS
2— /4Oz~ + E’2Ozl1~). (4.38)

Alsothedifferencefor this variationtobeexactly 5 °x~ = 8L~(~)p iscomputed
throughthe SpenceroperatorV’ of type (1,0), seeref. [29], which is the lin-
earizedversionof the operator~‘. That is, if f2 is in the kernelof V’ then E~
will belongto Ker V1. Indeed,by constructionof ~‘f throughthe isomorphism
(2.46) we haveV’~ = V’~ + V’.~f(~).In components

wherethe requiredvalue of i~ is readfrom eq. (4.21). So the choiceof such
a f2 implies ~ = 3Z.E’2 andx

2~= 0. Conversely, since~ is known from
eq. (4.21), imposingD’E,~= 0 implies f2 C Ker~’.In bothcases,the gauge
variation (4.38) becomesexactly lIiC(E)p.

To bemoregeneral,let usproceedby inductionon q. Lookingbackat (4.3la)
andsince thesectionf~ C

1~q+i is invertible (Z
2 ~ 0) supposethat for 0 �

al �
X~,z 0 ~ Z0+1~=

13zZa ~ Zc,+i, = 9~al+lZ

~ fq+i CKerr’ =~- .x~±13~nlpz (4.39)

by definition, see(4.32) andtheresolutionof (4.3lb). In orderwords,we have

up to orderq

= °X~= ~“°f~+i = ~ with f~+~C Ker~’. (4.40)
At orderq + 1 for lal = q + 1 we haveby theassumption(4.40) andfrom (4.31)

= (13~~1~’zz~+,,),

— ~( z~z — lA~ a+1, (4.41)

al l~l
‘ç.’ ~ (kI + k~’I) IAl-i-i

7..nI~’i z~a
— L.s 1lvl’ ~ 2

lAl=O lul=O
= 13Jal~~+ ~

which yields

~~2dz + ~~dz = 8~p~d~+ X~,zOA2. (4.42)
Then imposingthat the sectionf~+2 C

1~q+2 suchthat

+2 —, 1,07r~~,0fq~2fq~IEKerV , D fq+2~’Xq~+i,
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mustbelongto Ker~ we find

Z Oz n tXq+i = Xq+1 =

In conclusion,for any section (potential) f~+iwhich belongsto Ker V’
(“gauge fixing” at eachorder) the image (field) x~= ~“°f~+i defined in
(4.29) is theparticularlysimplesectionO~~ =

13q (p) (where13~meansthatonly
derivativeswith respectto z are performedin the differentialoperationJq) is a
q-jetof a sectionof thenaturalbundleF andbelongsto J~(F). It canbeshown
[21,22] that, sincep is geometricalobject for R~,Jq(p) will be a geometrical
objectfor ~ (andherethanksto the complexformulation 0q (p) will be a
geometricalobjectfor ~ ) - The gaugevariationof sucha sectionis then

(5OXqZ = 513q(/1) = 13~LC~’)p. (4.43)

Choosingthesespecialsections,andpassingtotheprojectivelimit thegeneral
R~valuedone-form(4.14) becomes

= dz + d±~+ ~ ~l, ~ai~z)

al>’

= exp{t13
2} (dz + p~d~)= exp{t82}OAz,

which is exactly the zero ghost number part of the algebraicequation (13)
workedOut in ref. [11].

To recapitulatehow in fact the Spencertheory and ref. [11] are intermin-
gled, let usmakesomecomments.Jet theoryseemsto beappropriatefor treat-
ing in a moresatisfactorygeometricalway an infinite dimensionalsymmetry
group.Then, oncethe geometricstructureof a jet theory hasbeenidentified
with respectto ageneralframeworkfor dealingwith Lie pseudogroups,the role
of “gaugefields” is playedin theusefulholomorphicrepresentationby the sec-
tionsx~whichareone-formswith valuesin someLie algebroidsR~’°.Moreover
by virtueof the local exactnessof the first non-linearSpencersequence,these
“gauge fields” comefrom “potentials” anda specialchoiceof thosepotentials
(“gaugefixing”) givesrise to specialfields. The space0 c T”° of solutionsof
RI’° is a sheafof infinite Lie algebras.Intuitively the variousgeneratorsof the
maximalLie subalgebradenotedby w2 in ref. [11] canbe chosenaccording
to the commentsat the endof appendixC. Howeverthis point remainsto be
clarifiedespeciallyif a representationof w2 is desired.

Let us endby sayingthat theBRSoperationgivesriseto an algebraicprocess
for computingfasterthesuccessiveinfinitesimalgaugevariations(4.43) at each
jet order andthe ambiguityarising at eachorder,seeeq. (4.42) andalso ap-
pendix B, is relatedto thequestionwhetherwe areconcernedwith eitherasec-
tion ofjetbundleor jet of section,andthis iscontrolledby theSpenceroperator
2Y.
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5. Conclusion

Theapproachdescribedin thepresentpaperanditsapplicationto2-dconfor-
mal geometrycall for thefollowing short comment.Ourmotivation in writing
up this paperwas to providesomeexplanationsin orderto clarify thegeomet-
rical situationfoundin this topic of mathematicalphysicswithout completely
answeringthe manyquestionsarising from refs. [101 and [11]. Many aspects
remainto beaddressedandmoredetailedanalysisis left to futureinvestigations.
However,we emphasizethatwith thehelpof conceptscoming directly fromjet
theory andwhich cannotbe otherwiseintroduced,we were ableto link these
two geometricalformulationsof 2-d conformalfield theoriesandseewherethey
stand with respectto a generalmathematicalframework.As an explicit appli-
cation,theCauchy—Riemannsystemof PDEssetsa good examplewhereterms
involvingjets ofordertwoplay a roleof prominentimportance(seeremark4.1).

The analysispresentedin thethird partworks at level n = 2 of SL(n,C) and
explainsthe constructiongiven by ref. [101 at this level. But the investigation
for usingthis formal theoryto the studyof theconstructionof W-algebraswith
their underlyinggeometryhasnot yet beenachieved.

On the contrary,the computationin section4 of thenon-linear Spencerse-
quencegivesriseto a preciseandnaturalunderstandingof thealgebraicgenera-
tion in theVirasorocasebuilt in ref. [111.Let uspointoutthatthemainadvan-
tageof the presentapproachis to restricta generalformal theory to a specific
exampleratherthandevelopinga (good) “intuitive” constructionconcerned
with exteriorcalculusandbuilt up for a veryparticularcase.Moreoverdueto
the strongsimilarity of the constructionworkedout in ref. [11] for “gauging”
w1~ algebrasit suggeststhattheSpencersequenceoughttobealsoconstructed
for that case.But this requiresfinding first a (linear) systemof PDEs (if one
exists!)generatingthesew1+ algebras.

Jettheorysuppliesanappropriatesettingfor obtainingnewinformation of a
geometricnature.The point to emphasizeis thatconsideringa given Lie pseu-
dogroup +8 eithertheJanetor the Spencersequencescanbeconstructedgiving
riseto different geometricconceptsand results.It conveysthe ideathat this for-
mulationmight offer a unifying geometricalframeworkfor goingmuchfurther
in the investigationof gaugetheories,especiallywhenthe symmetry group is
infinite, and that thegeometryemergingfrom non-linearSpencersequence(s)
might castsomenewlights on thegeometricstructureof suchtheories.

The first author(S.L.) is deeplyindebtedto thesecondauthor (J.-F.P.)for
introducing him little by little to the Lie pseudogrouptechniqueandhe also

~ The spirit ofthis approachis in completeagreementwith thestartingpoint ofviewof ref. [ill,
which wasalreadyconsideredby E. and F. Cosseratin 1909 for ContinuumMechanics[22].



86 5. Lazzarini and f-F. Porn maret / Lie pseudogroupsand differentialsequences

wishesto thankR. Grimm for instructivediscussionsaboutthework [11] and
for privatecommunications.We aregrateful to the refereefor suggestionsand
constantencouragementsin the completionof this work.

Appendix A

In this appendixthe proofof theorem2.19is displayed.So performingtwo
infinitesimalgaugetransformations(2.44),theformer with respectto a section

+1 andthelatterwith respectto ~q +1, andthenantisymmetrizing,thevariation

of Xq reads
L(ji(?q÷i))(L(Ji(i~q+l))Xq+D~q~i)_ (,21_*çe) -

Now evaluatingthis variationon a vectorfield ~ C T, and takingcareof the
splitting of the actionof the formal Lie derivativeas statedin definition 2.18,
eq. (2.45),we obtain

L()~q+i)(L(i~q+i)i(~) — i([1.~,1~]))Xq

i([~, [~,C1]))xq
+ (L(~~+,)i(O i( [j, c~]))D~~~+

1_(~~ ~)-

Usingthe algebraicrelation [20, p. 384], [22, p. 206]

[L(17q+i),L(~q~i)] = ~

and the definition of the action of L(ft (~q+i))on T* 0 R~,the evaluation

becomes
i(~)L(j,([P?q+1,~q+l]))Xq + (L(i7~+,)i(~) —

—

Next sincethe actionof the formal Lie derivativeL~ + ~) on Jq (T) D Rq iS

definedby [20,p. 383]

L(i~q+i)?1q= [~q,7q] + i@~)Di~q+i (A.l)

= {~q+l,?lq+i} + i(i~)D~7q+l

the expressionat handis rewritten as

i(~)L(ji([~q+t,~q+i]))~q+ {~q+t,iU)

1Nq+2}

+i(11)D(i(OD~q+
2)— i([?1,~] )Di~’q+i_{c~q+i,l(~iDflq+2}

i(c~)D(i(C)D~iq+2)+ i( ~ )D,i q+1

By a direct computation[20, p. 383] giving

i(~~)D(i(c~)D~q+2) — i([i7,~] )D~q+i = i(~)D(i(11)D~q+2)=
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combinedwith thefollowing technicalformula [22, p. 209]:

i(~)D{~q+i,~q+i}= {i(()D~q+i,~q} + {~q, i(C)D~q+i},

we areleft with

+i(~)D({?/q+2,~q+2}+ ~(?1)D~q+2 i(~)Dij ~÷~)
= i(~)(L(fl([flq+l,l~q+1]))Xq+D([flq+1,~q+I])).

This completestheproof.

Appendix B

In this appendixweput togetherthe main ingredientsandequationsthatwe
will needin orderto makethecomparisonwith theSpencersequence.Forthe
sakeof conveniencethenotationintroducedin ref. [11] is kept.

(i) The BRS transformationof theBeltramidifferential p is definedthrough
a nilpotents-operationby

sp= + C13p —,uOC, sC = C13C, ~2 = 0, (B.l)

whereC is theghostfield asintroducedin ref. [30], andthepair (p,C) defines
thechiral splitting. Of coursetherearethe complexconjugateexpressions,and
we restrictourselvesto thesectorgeneratedby (p,C).

(ii) As for a Yang—Mills type theory theconstructionof thebigradedalgebra
is achievedby defining a nilpotent operationd = d + s with the algebraic
connection~ = dz + p d±+ C. The “russianformula”, which is given by the
vanishingof thetwo-form

(B.2)

is a compactway for writing equivalentlytheBRStransformations(B.1).
(iii) The authorsof ref [11] considerthemaximalproperLie subalgebraw

2

of theVirasoroalgebra

w2: [Lm,Ln] = (m — fl)Lm+n, m,n� —l . (B.3)

We associatea “gauge field”, M’
1, a one-form, with eachgeneratorL~,n � —1.

Thenthecurvature#9 F~for n ~ —1 is written as

= dM’1 + ~(k — l)L,I’~Mlc5fl (B.4)
k,1>—1

~ This formula, kindly communicated by R. Grimm, is rewritten in a slighty different way from

that worked out in ref. 1111 and takes into account the misprint in formula (6) of ref. [11].
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wherethe structureconstants(k — 1) of the commutationrelations (8.3) are
exhibited.According to the bigradingeach one-formM” will be parametrized
as follows:

(B.5)

wherethe ordinaryone-formtY’ carriesa null ghostnumberand 2” is a zero-
form with ghostnumberone. —

ImposingthevanishingcurvatureconditionF” = 0 at eachlevel, the resolu-
tion stepby stepof this hierarchyof equationsexhibitsa remarkablestructure
property.

Let us perform the first two stepsfor solving thesecurvatureequations.The
mainpoint isto fix the initial data,that is, M’ ~i. This is thechoicemadein
ref. [11]. Thenlet usstartby taking n = —1 andlook forM0. By a straitforward
computationthe decompositionwith respectto theghostgradingyields

ghost~=0 l3p+fI~p—t3~=0, (B.6a)

Is,u—~JC+p7~—t3~C= 0,ghost~= 1 < (B.6b)
(Y~— OC— t9~C= 0,

ghost~= 2 sC = CT!°. (B.6c)

Let usconsiderthe lastequation(B.6c).Thanksto thefact thatC2 = Owehave
in completegenerality2°= 13C + y°C,where y°is a (commuting)complex
numberofnull ghostnumber,Thengoingup troughtheequationswe obtainthe
generalsolution

i~f0= + 13M’. (B.7)

Similarly for n = 0 the partof theghostnumberis written as

s2’°= 2Cr’ ~Y1 = ~-132~+ ~‘C, (B.8)

and theambiguitypropagatesthroughthe equationsof lowerghostnumber.

Appendix C

The step to be discussedis formula (4.11) in thetext. In this appendix,it is
shownhow the formalpropertiesof the prolongationsR

9+ 1 will actuallydeter-
mine thealgebraiccommutationrelationsofthew2 (infinite) Lie algebra(B.3).

Let us first recall the generalformula of the algebraicbracket (2.35) on

Jq+i(T) for 0 < l~l<q,

l~l lI~l

{~q+i,~q+i}~= ~ ~+i=—~±i,)o~+~, (C.l)

kl=O lz’l=O
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wherethe combinatorialfactor in themulti-index notationstandsfor

.~2.r(A~+

.1.1 )~!v
1! 21+1’!

Thesecomponents(C. 1) canbe thoughtof as the successivederivativesup to
order q in theTaylor expansionof thebracket [~,~].

AccordingtothecomplexdecompositionR~~1= R~’.21~R~’~1(which implies

= ~+ 1 ~ 1) thealgebraicbracket(C. 1) on Jq~1(T) will berestrictedto

C Jq+i(T”°): = 0, 0< al ~q, (C.2)

andfor ~ ~ C~ with 0 ~ al <q, it takestheform*lO

= {~q+i,71q+i}~

al al
(IAI + luI)’

= l~l!lu! — f) ~ (C.3)121=0 l~l=°

Let usperformthe changesin R~’~1,

forO�~Al�q+l, (C.4)

{~+i, ~q+i}~ laI!{~q+i,11q+i}:, for lal � 1.

Thus (C.3) takestheform

al al
= ~ (lul + l)(~x÷i~j~÷i,)~÷1’. (C.5)

21=0 l~l=°

Invertingtherole of ~ and,~in (C.5) andsubstractingwe areleft with

{~q+1,~q+1} = (lal + 1)(~~,_~2~+,,)
1141 l~l—’

+ ~ ~(lul+ ~ (C.6)
121=1 z~1=0

If we set, for anypairof positive integers(m, n)

L,,~:(z,~)~ ~ (C.7)

L~: (z,f) i—f ~

~ Thanks to formula (C.2) the multi-indices will only be consideredwith respectto the z-

component.Thisremarkexplainstheoccurrenceof themulti-index lenghtsin thecombinatorial
factorof formula (C.3).
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as particularsectionsof R~’°for q � m + n + 1, whereby virtue of (C.2) the
integersm,n only count the z-indices,it turns out that the bracketof sections
(C.6) reads

{Lm,Ln}a = —(m — ~ = (m — n)Lm+n. (C.8)

So let us denotethe projective limit over the integersn � —1 by R~°=

pr lim anddefinethebracketon R~°from (C.8) by
[Lrn,Ln]~{Lrn,Ln}m+n+i = (mn)L,n+n, m,n�—l, (C.9)

wherethe algebraicbracketis computedon R~’°,for q � ‘ii + n + 1. We thus
recognizeat oncethecommutationrelationsof themaximal Lie subalgebraw2
of the Virasoroalgebra,formula (B. 3).

Let usaddsomemorewordsabouttheway to recoverthenotionofa Lie alge-
bra. First let usrecall thenotationR.,~= ~ (X,X) andfix apoint (z0,±o)C X.
The isotropyLie groupGq = 1Z,,, ( (z0, ±o), (z0, ±,,))of

7~q~seesection2, made
by jetswith thesamesourceandtargethasas projectivelimit aninfinite dimen-
sionalLie group G~= pr lim (~with an infinite Lie algebra~ = pr lim ~

4,

where~ is theLie algebraof G~’°.SincetheCauchy—Riemannsystemis transi-
tive, the constructionis independentof the choiceof the point (z0,z0). So the
bundle R~(X, (z0,~o)) = pr lim R~(X, (z0, ±~))is a bundleof Lie algebras,
that is, overeachpoint of X the fiber is the isotropypart of the infinite Lie
algebraw2.
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